A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input
نویسندگان
چکیده
Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth’s surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1–2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of Climate 2016, 4, 50; doi:10.3390/cli4040050 www.mdpi.com/journal/climate Climate 2016, 4, 50 2 of 18 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E’s dayand night-time observations.
منابع مشابه
Advantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape
To improve the understanding of water–vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow receiving area in northeastern Australia during December 2008 to May 2009. In January 2009, monthly ...
متن کاملBias correction of satellite soil moisture and assimilation into the NASA Catchment land surface model
Surface soil moisture data from different sources (satellite retrievals, ground measurements, and land model integrations of observed meteorological forcing data) have been shown to contain consistent and useful information in their seasonal cycle and anomaly signals even though they typically exhibit very different mean values and variability. At the global scale, in particular, it is currentl...
متن کاملبهره گیری از سری زمانی داده های ماهواره ای به منظور اعتبارسنجی کانون های شناسایی شده تولید گرد و غبار استان البرز
Dust is one of the common processes of arid and semiarid regions that its occurrence frequencies has increased in recent years in Iran. The proper identification of sand and dust storms (SDS) is particular importance due to its impact on the environment and human health. So far, several methods for identifying these sources have been proposed such as methods based on field studies and geomorpho...
متن کاملRequirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution
Soil moisture satellite mission accuracy, repeat time and spatial resolution requirements are addressed through a numerical twin data assimilation study. Simulated soil moisture profile retrievals were made by assimilating near-surface soil moisture observations with various accuracy (0, 1, 2, 3, 4, 5 and 10%v/v standard deviation) repeat time (1, 2, 3, 5, 10, 15, 20 and 30 days), and spatial r...
متن کاملDownscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees
Soil moisture is a key part of Earth’s climate systems, including agricultural and hydrological cycles. Soil moisture data from satellite and numerical models is typically provided at a global scale with coarse spatial resolution, which is not enough for local and regional applications. In this study, a soil moisture downscaling model was developed using satellite-derived variables targeting Gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016